ALGEBRAIC GEOMETRY - FINAL EXAMINATION

Attempt all questions - 10 a.m. to 1 p.m., 9th May 2012 - Total Marks:50

In all questions below, the field k is algebraically closed, unless otherwise mentioned.

- (1) Let k^2 be the affine plane and let \mathcal{O} be the sheaf of regular functions on k^2 . Let $U = k^2 \{(0,0)\}$ be the complement of the origin, considered as open subset of k^2 . Prove that $\mathcal{O}(U) \cong k[X,Y]$, and the restriction map $\mathcal{O}(k^2) \to \mathcal{O}(U)$ is the identity map on k[X,Y]. Using this, prove that (U,\mathcal{O}_U) cannot be isomorphic to an affine variety (here \mathcal{O}_U denotes the restriction of \mathcal{O} to U). (6+6 marks)
- (2) Let $\mathbb{P}^n(k)$ be the *n* dimensional projective space over *k*, and let \mathcal{O} denote the sheaf of regular functions on $\mathbb{P}^n(k)$. Let *f* be any homogeneous polynomial of positive degree. Describe $\mathcal{O}(D_+(f))$ and verify that \mathcal{O} satisfies the sheaf conditions on such basic open sets. Prove that $(\mathbb{P}^n(k), \mathcal{O})$ is an algebraic variety. (8+8 marks)
- (3) Prove that a morphism $\phi : X \to Y$ between two algebraic varieties is an isomorphism, if and only if, the map ϕ is a homeomorphism and the induced maps of stalks $\phi^* : \mathcal{O}_{Y,\phi(x)} \to \mathcal{O}_{X,x}$ is an isomorphism of local rings for all $x \in X$. (3+5 marks)
- (4) Let $\phi : \mathbb{P}^1 \to \mathbb{P}^n$ be the map defined by $\phi(x : y) = (x^n : x^{n-1}y : x^{n-2}y^2 : \dots : xy^{n-1} : y^n)$. Let C be the image of ϕ . Prove that C is a closed subset of \mathbb{P}^n and $\phi : \mathbb{P}^1 \to C$ is an isomorphism of algebraic varieties. (7+7 marks)